Best Fast charging method detailed comparison!!

Fast charging

One of the most common qualms from smartphone users is how their phones never last through the whole day. Despite all the advances in smartphones in recent years, such as quick charging solutions like Quick Charge, Dash Charge and SuperCharge, batteries feel like they have not evolved quick enough to keep up with our needs.
Part of the blame goes onto OEMs, who do work towards making our smartphones more efficient year-on-year. But on the flip side, the increasing efficiency of our smartphones are seen as perfect excuses to thin down our phones by yet another millimeter. And to retain the practicality of the phone, advances in the field of charging are advertised as a key feature of the device. So what if your phone dies after 6 hours of standby? Now you can get a day’s power in half an hour, or some other slogan.
Choice, one of Android’s strongest selling points, also ends up confusing users when it comes to charging standards. There are multiple charging solutions available across Android flagships, with their own positive and negatives attributes, intricacies and particularities. Some charging solutions are quick, some are efficient and some aren’t really quite as great as one would expect.
In this article, we will take a look at the performance and efficiency of some popular charging standards, namely Huawei’s SuperCharge, USB Power Delivery, OnePlus’s Dash Charge, Samsung’s Adaptive Fast Charging, and Qualcomm’s Quick Charge 3.0.



Methodology

The data we collected involved the use of a script that automatically measured key charging parameters  (as reported by Android) and dumped them into a data file for us to analyze. All charging standards were tested with their stock charging adapter and cable to ensure that the data is representative of what we can expect from each standard. All data collection began with the battery at 5% and ended with the battery at 95%. To test thermal performance and charging speeds during screen-on use cases, the script looped PCMark tests while the phone was charging to simulate a real-world usage environment; temperature readings are gathered from the OS, and they are not measured externally. For the sake of clarity in this presentation, averaged data was rounded off while preparing the graphs.
Charging StandardDevice TestedBattery Capacity
Dash ChargeOnePlus 33,000mAh
USB-PDPixel XL3,450mAh
Adaptive Fast ChargingGalaxy S8+ (Exynos)3,500mAh
QuickCharge 3.0LG V203,200mAh
SuperchargeHuawei Mate 94,000mAh

Quickest Charging Standard

When we measured the charging times of the popular charging solutions, we came across a peculiar conclusion: USB Power Delivery was the slowest of all fast charging solutions that we tested, at least as implemented on the Pixel XL. This is only surprising because USB Power Delivery is the “standard” pushed forth by the USB-IF standards body, and the one that Google strongly encourages as well — once we look at each standard’s workings further down this article, it’ll make more sense.
USB Power Delivery has been implemented in the Google Pixel and Google Pixel XL. The smaller Google Pixel is marketed at being capable of 15W-18W charging, while the bigger Google Pixel XL is capable of 18W charging. As we noted in our Google Pixel XL review, actual charge times on the device were not competitive, ending up in the last place when compared with other solutions, and our extensive testing on the charging times for the purposes of comparison reveals the same. Below you can see the charging time of each standard from 5% to 80% when scaling the battery capacity across test devices to 3,000mAh — this does not represent how each standard would charge such battery capacity with perfect accuracy, and the graph should be used to get an approximate idea as to how they compare.
When we look at which device charged the fastest, the quickest charging solution we tested is OnePlus’s Dash Charge functionality, which on the OnePlus 3 ends up being quicker than competitors by about 10 minutes in the end (before adjusting for battery capacity), and by a good half hour against USB Power Delivery. On the flip side, Dash Charging is proprietary technology, which adds its own set of complications which we will discuss later on in this article. Dash Charge does end up behind Huawei Supercharge when we take into account, and adjust for, battery capacity in the device, as the Huawei Mate 9 has a substantially larger battery than the OnePlus 3. While Supercharge achieves a faster peak charging rate, the Huawei Mate 9 does not reach 95% charge the earliest because of its larger battery capacity. So while the OnePlus 3 tops up faster in terms of reaching the higher percentages of its battery capacity, the Mate 9 is actually adding more charge per unit of time (a function of Huawei’s higher power delivery ouput).
Huawei Supercharge and Qualcomm Quick Charge 3.0 performed similarly, while Samsung’s Adaptive Fast Charge had less of an initial speed advantage but it still managed to reach the goal of 95% charge while giving close competition to the other two.
We also have temperature data alongside the charging time. This graph coincides with the charge percentage, but had to be separated to keep things simpler, uncluttered and easy to understand.
We were unable to finely control all the starting temperatures of our test devices because of the varying temperatures in the different locations they were tested in, so our focus should be on consistency and stability rather than the absolute highs and lows displayed by each data set. Battery temperature was obtained from Android’s low-level system record of battery temperature.
The most thermally consistent of the lot is Samsung’s Adaptive Fast Charging as it maintains a good hold over the device temperature throughout the entire session. Qualcomm’s Quick Charge 3.0 was the “coolest”, though again, we would need better-controlled initial conditions with perfect starting points and minimal extraneous variables to crown it the king. Similarly, we cannot call USB Power Delivery the “hottest”, but it definitely displays the widest range of temperatures. It’s also worth noting that most of these devices end up cooling down once their charging rate begins slowing down, and USB-PD does a good job at managing temperature past its peak.
The situation changes when you look at how these technologies perform when the device is subjected to a real-world workload. As stated before, we looped PCMark’s Work 2.0 test to simulate real-world usage while charging these devices, in order to measure how charging times and temperatures differed.
OnePlus’s Dash Charging remains as the top performer primarily because of its implementation, which we’ll detail further down. The voltage and current regulating circuitry is situated in the Dash Charger, which leads to lower temperatures while charging. So Dash Charge’s idle-charging and under-load charging scores tend to show very little variation.
On the other hand, Samsung’s Adaptive Fast Charging shows the worst performance when subjected to charging under a real-world workload. The device takes about twice the time to charge if it is being used, and the charging also increases in a peculiarly linear fashion (given voltage and current remain constant) that is not seen across any of our other tests. In fact, according to Samsung’s support page for the S6, its Adaptive Fast Charging solution is entirely disabled when the screen is on. Express mentions like these could not be found on newer support pages, but Samsung continues to recommend devices to be switched off while using Fast Charging.
Other standards continue to occupy positions between these extremes, most lying on the better side of the scale. Even USB Power Delivery, the worst performer of idle-charging takes just about 10 minutes more to achieve the same charge levels under load.
Temperature-wise, Samsung’s Adaptive Fast Charging (if we can call it that under this test) maintains a consistent range of temperatures, flowing within a 5°C range. Huawei’s Supercharge follows along next, followed by OnePlus’s Dash Charge. Qualcomm’s Quick Charge 3.0 and USB Power Delivery are the worst performer temperature-wise with large inconsistencies and variations throughout their cycles.

With inter-standard comparison out of the way, let’s take a closer look at how the standards performed individually under idle-charging and load-charging scenarios, with a short explanation as to why they behave this way and how they work.
Keep sharing;)
Comment below:)

Comments

Popular posts from this blog

A $30 (2266 INR)android 5.1 smart watch which gives you amoled display and 1.3 GHz processor with waterproofing,best ever

How to download any image or video from instagram in simple steps

Kinemaster pro's and cons